Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-128970.v1

ABSTRACT

Interferon-induced transmembrane proteins (IFITMs 1, 2 and 3) are thought to restrict numerous viral pathogens including severe acute respiratory syndrome coronaviruses (SARS-CoVs). However, most evidence comes from single-round pseudovirus infection studies of cells that overexpress IFITMs. Here, we verified that artificial overexpression of IFITMs blocks SARS-CoV-2 infection. Strikingly, however, endogenous IFITM expression was essential for efficient infection of genuine SARS-CoV-2 in human lung cells. Our results indicate that the SARS-CoV-2 Spike protein interacts with IFITMs and hijacks them for efficient viral entry. IFITM proteins were expressed and further induced by interferons in human lung, gut, heart and brain cells. Intriguingly, IFITM-derived peptides and targeting antibodies inhibited SARS-CoV-2 entry and replication in human lung cells, cardiomyocytes and gut organoids. Our results show that IFITM proteins are important cofactors for SARS-CoV-2 infection of human cell types representing in vivo targets for viral transmission, dissemination and pathogenesis and suitable targets for therapeutic approaches.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
2.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-96076.v1

ABSTRACT

Preexisting diabetes increases the risk of a severe course of the pandemic coronavirus disease 2019 (COVID-19). Vice versa, exacerbations of a preexisting diabetes as well as new-onset diabetes have been reported upon SARS-CoV-2 infection. Thus, there is an imperative need to clarify whether human pancreatic endocrine cells organized within an islet of Langerhans are permissive for and affected by SARS-CoV-2 infection, and to elucidate the mechanisms underlying the development of diabetes upon COVID-19. Here, we (i) defined ACE2 and TMPRSS2 expression patterns in human pancreatic endocrine and exocrine cell types, (ii) employed human pancreatic islet cultures to demonstrate susceptibility to SARS-CoV-2 infection and to viral replication in β-cells, (iii) showed that SARS-CoV-2 attenuates glucose-stimulated insulin secretion, and (iv) tested remdesivir as eventually effective to prevent β-cell failure. In addition, we (v) visualized viral particles replicating in endocrine pancreatic cells and define their subcellular localization patterns via transmission electron microscopy, and finally (vi) present examples of cell type specific pancreatic infection patterns of COVID-19 deceased patients. Overall, our data demonstrate that SARS-CoV-2 can infect both the exocrine and endocrine compartments of the pancreas and can perturb β-cell integrity, which might lead to an increased risk for diabetes.


Subject(s)
Coronavirus Infections , Endocrine System Diseases , Diabetes Mellitus , COVID-19 , Pancreatitis , Pancreatic Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL